離心泵安全運行
發(fā)布時間:2015年07月12日 08:35 閱讀:4782
返回 來源:
澤德
泵的能力和特性參數(shù)不僅是流體在輸送時考慮的設計依據(jù),而且是許多流體泄漏事故、冒頂事故、錯流或錯配事故技術分析和鑒定的依據(jù)。
離心泵是依靠高速旋轉(zhuǎn)的葉輪所產(chǎn)生的離心力對液體做功的流體輸送機械。由于它具有結(jié)構(gòu)簡單,操作方便、性能適應范圍廣、體積小、流量均勻、故障少、壽命長等優(yōu)點,在化工生產(chǎn)中應用十分廣泛。在化工生產(chǎn)中使用的泵大約有80%為離心泵。
一、 離心泵工作原理分析
(一) 基本結(jié)構(gòu)
離心泵的結(jié)構(gòu)如圖6—1所示,在蝸牛形泵殼內(nèi),裝有一具葉輪,葉輪與泵軸連在一起,可以與軸一起旋轉(zhuǎn),泵殼上有兩個接口,一個在軸向,接吸人管,一個在切向,接排出管。通常,在吸人管口裝有一個單向底閥,在排出管口裝有一調(diào)節(jié)閥,用來調(diào)節(jié)流量。
(二)、 工作原理
在離心泵工作前,先灌滿被輸送液體。當離心泵啟動后,泵軸帶動葉輪高速旋轉(zhuǎn),受葉輪上葉片的約束,泵內(nèi)流體與葉輪一起旋轉(zhuǎn),在離心力的作用下,液體從葉輪中心向葉輪外緣運動,葉輪中心(吸入口)處因液體空出而呈負壓狀態(tài),這樣,在吸人管的兩端就形成了一定的壓差,即吸人液面壓力與泵吸人口壓力之差,只要這一壓差足夠大,液體就會被吸人泵體內(nèi),這就是離心泵的吸液原理。另一方面,被葉輪甩出的液體,在從中心向外緣運動的過程中,動能與靜壓能均增加了,流體進入泵殼后,由于泵殼內(nèi)蝸形通道的面積是逐漸增大的,液體的動能將減少,靜壓能將增加,到達泵出口處時壓力達到最大,于是液體被壓出離心泵,這就是離心泵的排液原理。
如果在啟動離心泵前,泵體內(nèi)沒有充滿液體,由于氣體密度比液體的密度小得多,產(chǎn)生的離心力很小,從而不能在吸入口形成必要的真空度,在吸入管兩端不能形成足夠大的壓差,于是就不能完成離心泵的吸液。這種因為泵體內(nèi)充滿氣體(通常為空氣)而造成離心泵不能吸液(空轉(zhuǎn))的現(xiàn)象稱為氣縛現(xiàn)象。因此,離心泵是一種沒有自吸能力的泵,在啟動離心泵前必須灌泵。
(三)、 主要構(gòu)件
離心泵的主要構(gòu)件有葉輪、泵殼和軸封,有些還有導輪。
(1)葉輪 葉輪是離心泵的核心構(gòu)件,是在一圓盤上設置4—12個葉片構(gòu)成的,其主要功能是將原動機械的機械能傳給液體,使液體的動能與靜壓能均有所增加。
根據(jù)葉輪是否有蓋板可以將葉輪分為3種形式,即開式、半開(閉)式和閉式,如圖6—2所示,其中圖6—2(a)為閉式葉輪,圖6—2(b)為半開式葉輪,圖6—2(c)為開式葉輪。通常,閉式葉輪的效率要比開式高,而半開式葉輪的效率介于兩者之間,因此應盡量選用閉式葉輪,但由于閉式葉輪在輸送含有固體雜質(zhì)的液體時,容易發(fā)生堵塞,故在輸送含有固體的液體時,多使用開式或半開式葉輪。對于閉式葉輪與半閉式葉輪,在輸送液體時,由于葉輪的吸人口一側(cè)是負壓,而在另一側(cè)則是高壓,因此在葉輪兩側(cè)存在著壓力差,從而存在對葉輪的軸向推力,將葉輪沿軸向吸人竄動,造成葉輪與泵殼的接觸磨損,嚴重時還會造成泵的振動,為了避免這種現(xiàn)象,常常在葉輪的蓋板上開若干個小孔,即平衡孔。但平衡孔的存在降低了泵的效率。其他消除軸向推力的方法是安裝止推軸承或?qū)挝臑殡p吸。
根據(jù)葉輪的吸液方式可以將葉輪分為兩種,即單吸葉輪與雙吸葉輪,如圖6—3所示。顯然,雙吸葉輪完全消除了軸向推力,而且具有相對較大的吸液能力。
葉輪上的葉片是多種多樣的,有前彎葉片,徑向葉片和后彎葉片3種,但工業(yè)生產(chǎn)中主要為后彎葉片,因為后彎葉片相對于另外兩種葉片的效率高,更有利于動能向靜壓能的轉(zhuǎn)換。由于兩葉片間的流動通道是逐漸擴大的,因此能使液體的部分動能轉(zhuǎn)化為靜壓能,葉片是一種轉(zhuǎn)能裝置。
(2)泵殼 由于泵殼的形狀像蝸牛,因此又稱為蝸殼。這種特殊的結(jié)構(gòu),使葉輪與泵殼之間的流動通道沿著葉輪旋轉(zhuǎn)的方向逐漸增大并將液體導向排出管。
因此,泵殼的作用就是匯集被葉輪甩出的液體,并在將液體導向排出口的過程中實現(xiàn)部分動能向靜壓能的轉(zhuǎn)換。泵殼是一種轉(zhuǎn)能裝置,為了減少液體離開葉輪時直接沖擊泵殼造成的能量損失。常常在葉輪與泵殼之間安裝一個固定不動的導輪,如圖6—4所示。導輪帶有前彎葉片,葉片間逐漸擴大的通道使進入泵殼的液體的流動方向逐漸改變,從而減少了能量損失,使動能向靜壓能的轉(zhuǎn)換更加有效。導輪也是一個轉(zhuǎn)能裝置。通常,多級離心泵均安裝導輪。
(3)軸封裝置 由于泵殼固定而泵軸是轉(zhuǎn)動的,因此在泵軸與泵殼之間存在一定的空隙,為了防止泵內(nèi)液體沿空隙漏出泵外或空氣沿相反方向進人泵內(nèi),需要對空隙進行密封處理。用來實現(xiàn)泵軸與泵殼間密封的裝置稱為軸封裝置。常用的密封方式有兩種,即填料函密封與機械密封。
填料函密封是用浸沒或涂有石墨的石棉繩(或其他軟填料)填入泵軸與泵殼間的空隙,來實現(xiàn)密封目的;機械密封是通過一個安裝在泵軸上的動環(huán)與另一個安裝在泵殼上的靜環(huán)來實現(xiàn)密封目的的,工作時借助彈力使兩環(huán)密切接觸達到密封。兩種方式相比較,前者結(jié)構(gòu)簡單,價格低,但密封效果差;后者結(jié)構(gòu)復雜,精密,造價高,但密封效果好。因此,機械密封主要用在一些密封要求較高的場合,如輸送酸、堿、易燃、易爆、有毒、有害等液體。
近年來,隨著防磁防漏技術的日益成熟,借助加在泵內(nèi)的磁性液體來達到密封與潤滑作用的技術正越來越引起人們的關注。
二、 離心泵的主要性能
(一) 主要性能參數(shù)
(1)送液能力 指單位時間內(nèi)從泵內(nèi)排出的液體體積,用Qv表示,單位m3/s,也稱生產(chǎn)能力或流量。離心泵的流量與離心泵的結(jié)構(gòu)、尺寸和轉(zhuǎn)速有關,在操作中可以變化,其大小可以由實驗測定。離心泵銘牌上的流量是離心泵在最高效率下的流量,稱為設計流量或額定流量。
(2)揚程 是離心泵對lN流體所做的功。它是1N流體在通過離心泵時所獲得的能量,用H表示,單位m,也叫壓頭,離心泵的揚程與離心泵的結(jié)構(gòu)、尺寸、轉(zhuǎn)速和流量有關。通常,流量越大,揚程越小,兩者的關系由實驗測定。離心泵銘牌上的揚程是離心泵在額定流量下的揚程。
(3)功率 離心泵在單位時間內(nèi)對流體所做的功稱為離心泵的有效功率,用Pe表示,單位W,有效功率由下式計算,即戶e=HQρg 。
離心泵從原動機械那里所獲得的能量稱為離心泵的軸功率,用戶表示,單位W,由實驗測定,是選取電動機的依據(jù)。離心泵銘牌上的軸功率是離心泵在額定狀態(tài)下的軸功率。
(4)效率 是反映離心泵利用能量情況的參數(shù),由于機械摩擦、流體阻力和泄漏等原因,離心泵的軸功率總是大于其有效功率的,兩者的差別用效率來表示,用,η表示,其定義式為
離心泵效率的高低與泵的類型、尺寸及加工精度有關,又與流量及流體的性質(zhì)有關,一般地,小型泵的效率為50%~70%,大型泵的效率要高些,有的可達90%。
(二) 性能曲線
實驗表明,離心泵的揚程、功率及效率等主要性能均與流量有關,把它們與流量之間的關系用圖表示出來,就構(gòu)成了離心泵的特性曲線,如圖6—5所示。
不同型號的離心泵的特性曲線雖然各不相同,但其總體規(guī)律是相似的。
(1)揚程—流量曲線 揚程隨流量的增加而減少,但其總體規(guī)律是相似的。
(2)軸功率—流量曲線 軸功率隨流量的增加而增加,也就是說當離心泵處在零流量時水泵的功率小。因此,離心泵開車和停車時,都要關閉出口閥,以達到降低功率,保護電機的目的。
(3)效率—流量曲線 離心泵在流量為零時,效率為零,隨著流量的增加,效率也增加,當流量增加到某一數(shù)值后,再增加,效率反而下降。通常,把最高效率點稱為泵的設計點或額定狀態(tài),對應的性能參數(shù)稱為最佳工況參數(shù)。銘牌上標出的參數(shù)就是最佳工況參數(shù)。顯然,泵在最高效率下運行最為經(jīng)濟,但在實際操作中不太可能,應盡量維護在高效區(qū)(效率不低于最高效率的92%的區(qū)域)工作。性能曲線上常用破折號將高效區(qū)域標出,如圖6—5所示。
離心泵在指定轉(zhuǎn)速下的特性曲線由泵的生產(chǎn)廠家提供,標在銘牌或產(chǎn)品手冊上。需要指出的是,性能曲線是293K和98.1Pa下以清水作為介質(zhì)測定的,因此,當被輸送液體的性質(zhì)與水相差很大時,必須校正。
三 離心泵的氣蝕與安裝高度
離心泵的揚程可以達到幾百甚至千米以上,但離心泵的安裝高度卻受到一定的限制,如果安裝過高,就會發(fā)生氣蝕現(xiàn)象。輕則導致流量、壓頭迅速下降,重則導致不能吸液或葉輪傷害。
(一) 汽蝕現(xiàn)象
如前所述,離心泵的吸液是靠吸液面與吸人口間的壓差完成的。當吸人液面壓力一定時,泵的安裝高度越大,則吸人口處的壓力將越小,當吸人口壓力小于操作條件下被輸送液體的飽和蒸汽壓時,液體將會汽化產(chǎn)生氣泡,含有氣泡的液體進入泵體后,在離心力的作用下,進入高壓區(qū),氣泡在高壓的作用下,又液化為液體。由于原氣泡位置的空出造成局部真空,周圍液體在高壓的作用下,迅速填補原氣泡所占空間。這種高速沖擊頻率很高,可以達到每秒幾千次,沖擊壓強可以達到數(shù)百個大氣壓甚至更高。這種高速沖擊頻率很高,輕的葉輪疲勞,重的則可以將葉輪與泵殼破壞。甚至能把葉輪打成蜂窩狀。這種因為被輸送液體在泵內(nèi)氣化再液化的現(xiàn)象叫離心泵的汽蝕現(xiàn)象。
汽蝕現(xiàn)象發(fā)生時,會產(chǎn)生噪聲和引起振動,流量、揚程及效率均會迅速下降。嚴重時,不能吸液。工程上當揚程下降3%時就認為進入了汽蝕狀態(tài)。
避免汽蝕現(xiàn)象的方法是限制泵的安裝高度。避免離心泵氣蝕現(xiàn)象的最大安裝高度,稱為離心泵的允許安裝高度,也叫允許吸上高度。
(二) 允許安裝(吸上)高度
離心泵的允許安裝高度可以通過在圖6—6中的0—0截面和l—1截面間列柏努利方程求得。即:
式中 Hg——允許安裝高度,m;
P0——吸人液面壓力,Pa;
p1——吸入口允許的最低壓力,Pa;
u1——吸人口處的流速,m/s;
ρ—液體的密度,kg/m3;
∑Hf,0—1——流體流經(jīng)吸人管的阻力,m。
從式(6—2)可以看出,允許安裝高度與吸人液面上方的壓力P0,吸入口最低壓力戶,、液體密度P、吸人管內(nèi)的動能及阻力有關。因此,增加吸人液面的壓力,減小液體的密度、降低液體溫度(通過降低液體的飽和蒸汽壓來降低p1),增加吸人管直徑(從而使流速降低)和減少吸入管內(nèi)流體阻力均有利于允許安裝高度的提高,在其他條件都確定的情況下,如果流量增加,將造成動能及阻力的增加,安裝高度會減少,汽蝕的可能性增加。
離心泵的允許安裝高度可以由允許吸上真空高度法或允許汽蝕余量法計算。近年來,前者已經(jīng)很少使用,故只介紹后一種方法。
離心泵的抗汽蝕性能參數(shù)可用允許氣蝕余量來表示,其定義為泵吸人口處動能與靜壓能之和比被輸送液體的飽和蒸汽壓頭高出的最低數(shù)值。即
式中AA——允許汽蝕余量,m;
Ps——操作溫度下液體的飽和蒸汽壓,Pa;其他符號同前。
同樣,泵的生產(chǎn)廠家提供的允許汽蝕余量是98.1kPa和293K下以水為介質(zhì)測得的,當輸送條件不同時,應該對其校正。
四、離心泵安全運行分析
(一) 離心泵的工作點
如前所述,離心泵的流量與壓頭之間存在一定的關系,這由特性曲線決定,而對于給定的管路其輸送任務(流量)與完成任務所需要的壓頭之間也存在一定的關系,這可由柏努利方程決定,這種關系也稱為管路特性。顯然,當泵安裝在指定管路時,流量與壓頭之間的關系既要滿足這兩個方程,在性能曲線圖上,應為泵的特性曲線和管路特性曲線的交點。這個交點稱為離心泵在指定管路上的工作點,顯然,交點只有一個,也就是說,泵只能在工作點下工作。
(二) 離心泵的安全調(diào)節(jié)
當工作點的流量及壓頭與輸送任務的要求不一致時,或生產(chǎn)任務改變時,必須進行適當?shù)恼{(diào)節(jié),調(diào)節(jié)的實質(zhì)就是改變離心泵的工作點。主要方法有以下幾點。
(1)改變閥門開度 主要是改變泵出口閥門的開度。因為即使吸入管路上有閥門,也不能進行調(diào)節(jié),在工作中,吸人管路上的閥門應保持全開,否則易引起汽蝕現(xiàn)象。
由于用閥門調(diào)節(jié)簡單方便,因此工業(yè)生產(chǎn)中主要采用此方法。
(2)改變轉(zhuǎn)速 通過前面對離心泵性能的分析可知,當轉(zhuǎn)速改變時,離心泵的性能也會跟著改變,工作點也隨之改變。
由于改變轉(zhuǎn)速需要變速裝置,使設備投入增加,故生產(chǎn)中很少采用。
(3)改變?nèi)~輪直徑 通過車削的辦法改變?nèi)~輪的直徑,來改變泵的性能,從而達到改變工作點的目的。
由于車削葉輪不方便,需要車床,而且一旦車削便不能復原,因此工業(yè)上很少采用。
五 其他類型的泵
(一) 往復泵
往復泵是一種容積式泵,是一種通過容積的改變來對液體做功的機械。。是通過活塞或柱塞的往復運動來對液體做功的機械的總稱,包括活塞、柱塞泵、隔膜泵、計量泵等。
結(jié)構(gòu)與工作原理:往復泵的主要構(gòu)件有泵缸、活塞(或柱塞)、活塞桿及若干個單向閥等。如圖6—所示,泵缸、活塞及閥門間的空間稱為工作室。當活塞從左向右移動時,工作室容積增加,而壓力下降,吸入閥在內(nèi)外壓差的作用下打開,液體吸人泵內(nèi),而排出閥則因內(nèi)外壓力的作用而緊緊關閉,當活塞從右向左移動時,工作室容積減小而壓力增加,排出閥在內(nèi)外壓差的作用下打開,液體被排到泵外,而吸人閥則因內(nèi)外壓力的作用而緊緊關閉,如此周而復始,實現(xiàn)泵的吸液與排液。
活塞在泵內(nèi)左右移動的端點叫“死點”,兩“死點”間的距離為活塞從左向右運動的最大距離,稱為沖程。在活塞往復運動的一個周期里,如果泵只吸液一次,排液一次,稱為單動往復泵,如果各兩次,稱為雙動往復泵,人們還設計了三聯(lián)泵,三聯(lián)泵的實質(zhì)是三臺單動泵的組合,只是排液周期相差了三分之一。
(二) 旋渦泵
旋渦泵也是依靠離心力對液體做功的泵,但其殼體是圓形而不是蝸牛形,因此易于加工,葉片很多,而且是徑向的,吸人口與排出口在同側(cè)并由陋舌隔開,如圖6—8所示。工作時,液體在葉片間反復運動,多次接受原動機械的能量,因此能形成比離心泵更大的壓頭。不但流量小,而且由于在葉片間的反復運動,造成大量能量損失,效率低,約在15%一40%。因此,旋渦泵適用于輸送流量小而壓頭高的液體,例如送精鎦塔頂?shù)幕亓饕?。其性能曲線除功率—流量線與離心泵相反外,其他與離心泵相似,所以旋渦泵也采用旁路調(diào)節(jié)。
(三) 旋轉(zhuǎn)泵
旋轉(zhuǎn)泵是依靠轉(zhuǎn)子轉(zhuǎn)動造成工作室容積改變來對液體做功的機械。具有正位移特性。其特點是流量不隨揚程而變,有自吸力,不需灌泵,采用旁路調(diào)節(jié)器,流量小,比往復泵均勻,揚程高,但受轉(zhuǎn)動部件嚴密性限制,揚程不如往復泵,常用的旋轉(zhuǎn)泵有齒輪泵和螺桿泵兩種。見圖6—9和圖6—10。
齒輪泵通過兩個相互嚙合的齒輪的轉(zhuǎn)動對液體做功的,一個為主動輪,一個為從動輪。齒輪將泵殼與齒輪間的空隙分為兩個工作室,其中一個因為齒輪的打開而呈負壓與吸入管相連,完成吸液,另一個則因為齒輪嚙合而呈正壓與排出口相連,完成排液。近年來,內(nèi)嚙合形式正逐漸替代外嚙合形式。因為其工作更平穩(wěn),但制造復雜。
齒輪泵的流量小,揚程高,流量比往復泵均勻。適用于輸送高黏度及膏狀液體。例如潤滑油,但不宜輸送含有固體雜質(zhì)的懸浮液。
螺桿泵是由一根或多根螺桿構(gòu)成的。以雙螺桿為例,是通過兩個相互嚙合的螺桿來對液體做功,其原理、性能均與齒輪泵相似。具有流量小、揚程高、效率高、運轉(zhuǎn)平穩(wěn)、噪音低等特點。流量均勻。適用于高黏度液體的輸送,在合成纖維、合成橡膠工業(yè)中應用較多。
六 往復式壓縮機
氣體壓縮與輸送機械廣泛應用在化工生產(chǎn)中,如前所述,按工作原理分也可以分為4類。而且各類的工作原理也與相應類型的泵相似。但是,由于氣體的明顯可壓縮性,使氣體的壓送機械更具有自身的特點。通常,按終壓或壓縮比(出口壓力與進口壓力之比)可以將氣體壓送機械分為4類,見表6—2。
目前,工業(yè)生產(chǎn)中氣體的壓送機械有往復式壓縮機與真空泵;離心式通風機、鼓風機與壓縮機;液環(huán)式真空泵;旋片式真空泵、噴射式真空泵、羅茨風機;軸流式風機等多種形式,其中以往復式與離心式應用最廣。值得一提的是,過去主要靠往復式壓縮機實現(xiàn)高壓,但由于離心式壓縮技術的成熟,離心式壓縮機應用已越來越廣泛,而且,由于離心式在操作上的優(yōu)勢,離心式大有取代往復式的趨勢。離心式壓縮機在合成氨廠的推廣就是很好的證明。
返回頂部 | 返回列表